An Angular Hydroxylation Route to Taxanes: Facile Access to the Bridged AB Ring System of Taxol \ddagger

Brahim Kerkara, Duc Do Khac*a, Marcel Fétizon ${ }^{*}$, Frédéric Guirb.
${ }^{\text {a }}$ Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette. France.
${ }^{\text {b }}$ Centre d'Etudes du Bouchet, 91710 Vert-Le-Petit, France.

Abstract

The 5-mesyloxy-12-alcohol 11b, obtained in eight steps from 5a, via angular hydroxylation is transformed by Grob fragmentation into the highly functionalized taxane precursor 12. © 1997 Elsevier Science Ltd.

Taxol ${ }^{\circledR}{ }^{\circledR} \mathbf{1 a}$ and Taxotere ${ }^{\circledR}{ }^{\circledR} \mathbf{1 b}$ are used in the treatment of several human cancers. ${ }^{1}$ Since taxol was first isolated in small quantity from the bark of yew trees ${ }^{1}$, a great deal of work has been undertaken aiming at either a total or a partial synthesis of the drug. ${ }^{2}$ Although three total syntheses of taxol have been successful ${ }^{3}$, the need for shorter and more flexible routes remains a challenge.

1a

1b

Some years ago, we carried out a simple total synthesis of the bicyclic precursor 2 from readily accessible and cheap substances. ${ }^{4}$ The key step of the synthesis was the cycloaddition of diene 3 to 2,5 -dimethylbenzoquinone (obtained by Jones oxidation of 2,5-dimethylphenol).

[^0]This reaction turns out to be regio-and stereo-selective, and leads to $\mathbf{4 a}$ in high yield. However, when a large scale preparation of $4 \mathbf{a}$ was attempted, a very fast epimerisation of the expected compound took place (probably due to some acidic impurities remaining in the quinone) and led to $\mathbf{5 a}$, so that we were left with more than 500 g of apparently useless 5 a (mp $112^{\circ} \mathrm{C} \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$, Xrays). 4
We have now found that the latter compound can be specifically α-hydroxylated at C_{6} by treatment with Barton's reagent (benzeneseleninic anhydride). ${ }^{5}$

This reaction was successfully carried out, although the yield in the desired product remains modest. The crude oxidation mixture consists of $\mathbf{4 b}$, its isomer $\mathbf{5 b}$ and the corresponding lactone $\mathbf{6}$. Since their separation was difficult, this mixture was treated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a trace of TsOH . Under these conditions, $\mathbf{5 b}$ gave the lactone $6\left(53 \%\right.$ yield, m.p: $141-142^{\circ} \mathrm{C}, \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$), easily separated from 4 b (27% yield, m.p. $91-92^{\circ} \mathrm{C}, \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$). Although the hydroxyl group in $\mathbf{4 b}$ is severely hindered, it could easily be protected as the t-butyldimethylsilyl ether 4 c (TBDMS-Triflate, 2,6 -lutidine, $0^{\circ} \mathrm{C}$, then room temperature, quantitative yield, m.p. $109-110^{\circ} \mathrm{C}$, $\left.\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}\right)$.

Ultrasonication of $\mathbf{4 c}\left(\mathrm{Zn}\right.$ dust, $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}, 20 \mathrm{mn}$) affords in high yield a mixture of the expected dihydro-compounds $\mathbf{7 a}$ and $\mathbf{7 b}(23 \%)$ and, rather surprisingly, the triketone $\mathbf{8}\left(67 \%\right.$, m.p. $81-82^{\circ} \mathrm{C}$, $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}$, ICMS $[\mathrm{M}+\mathrm{H}]+377$). The NMR spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) suggested that the largely preferred conformation of $4 c$ is 9 , so that reduction through intramolecular Claisen cyclisation of $4 c$ into 8 is quite reasonable.

6

7a $\mathrm{R}_{1}=\mathrm{H} . \mathrm{R}_{2}=\mathrm{CH}_{3}$
7b $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$

The three keto groups of $\mathbf{8}$ have different reactivities. Luche reduction ($\left.\mathrm{NaBH}_{4}-\mathrm{CeCl}_{3}, 7 \mathrm{H}_{2} 0-\mathrm{MeOH}\right)$ at $0^{\circ} \mathrm{C}$ was regio- and highly stereo-selective and gave $10 \mathrm{a}\left(90 \%\right.$, m.p. $92-93^{\circ} \mathrm{C}, \mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$), in addition to a small amount of the β isomer $10 \mathrm{~b}\left(10 \%\right.$, m.p. $\left.178-180^{\circ} \mathrm{C}, \mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}\right) .{ }^{6}$ A further reduction $(\mathrm{NaBH} / \mathrm{MeOH}$, rt) of 10a gave quantitatively a single dihydroxyketone 11 a (m.p: $103-104^{\circ} \mathrm{C}, \mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$), which affords a single mesylate 11 b (mesylic anhydride, pyridine $0^{\circ} \mathrm{C}$ then rt ; m.p. $146-147^{\circ} \mathrm{C}, \mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{SiS}$).

The Grob fragmentation was accomplished by treatment of 11 b with LAH/DME (2 molar equivalents, $85^{\circ} \mathrm{C}$, 2 h), followed by acetylation, affording the bridged AB taxane precursor $\mathbf{1 2}$ (m.p. $99-100^{\circ} \mathrm{C}, \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}$) in 60% yield. Further work is in progress, in view of introducing ring C .

Acknowledgements: We are grateful to the CNRS for a financial help, to Prof. P. Potier for a generous support, as well as for his permanent encouragement, and to the Ligue Nationale contre le Cancer for a scholarship to (B.K).

References:

1-(a)Taxol and taxotere: Discovery, chemistry, and structure-activity relationships; Guénard, D.; GuérriteVoegelin, F.; Potier, P. Acc. Chem. Res. 1993, 26, 160-167.
(b)Taxane Anticancer Agents: Basic science and current status; Georg, G.; Chen, T.; Ojima, I.; Vyas, D.; Eds. ACS Symposium Series 583; American Chemical Society; Washington, DC, 1995.

2-(c) Taxol is the registred trademark for the molecule with generic name paclitaxel. For a recent review of synthetic studies from over 35 groups, see Wender, P.A.; Natchus, M.G; Shuler, A.J. in Taxol Science and Applications; Suffness. M.; Ed. CRC Press New York. 1995; pp 123-187.
(b)Kingston. D. G. I.; Molinero, A. A.; Rimoldo, J. M. The Taxane Diterpenoids in Progress in thr Chemistry of Natural Products, vol 61, 1993, 1-206, Springer-Verlag, New-York.

3-(a)Holton. R. A.: Somoza, C.; Kim, H. B.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Slimdo, M.; Smith, C. C.; Kim. S.; Nadizadeh. H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zang, P.; Murthi, K. K.; Gentile, L. N.; Liu,J. H. J. Am. Chem. Soc. 1994, 116, 1597-1598, ibid 1598-1600.
(b)Nicolaou, K. C.; Yang, Z.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Clairborne, C. F.; Renaud, J. Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. Nature 1994, 367-630.
(c)Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Di Grandi, M. J. J. Am. Chem. Soc. 1996, 118, 2843-2859.

4- Benchikh le Hocine, M.; Do Khac, D.; Fétizon, M.; Guir, F.; Prangé, T. Tetrahedron Lett. 1992, 33, 14431446.

5-(a)Barton, D. H. R.; Hui, A. H. F.; Lester, D. J.; Ley, S. V. Tetrahedron Lett. 1979, 3331-3334.
(b)Yamakawa, K.; Satoh, T.; Ohba, N.; Sagaguchi, R.; Takita, S.; Tamura, N. Tetrahedron Lett. 1981, 37, 473-479.

6-Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc., 1981, 103, 5454-5459.
(Received in France 8 February 1997; accepted 21 March 1997)

[^0]: \ddagger This paper is dedicated to Professor Truong Cong Quyen. Faculty of pharmacy Ha-Noi University of Viet-Nam, on the occasion of his 89 th birthday and for his studies of vietnamese medicinal plants.

